Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Generalized measurements, also called positive operator-valued measures (POVMs), can offer advantages over projective measurements in various quantum information tasks. Here, we realize a generalized measurement of one and two superconducting qubits with high fidelity and in a single experimental setting. To do so, we propose a hybrid method, the “Naimark-terminated binary tree,” based on a hybridization of Naimark’s dilation and binary tree techniques that leverages emerging hardware capabilities for midcircuit measurements and feed-forward control. Furthermore, we showcase a highly effective use of approximate compiling to enhance POVM fidelity in noisy conditions. We argue that our hybrid method scales better toward larger system sizes than its constituent methods and demonstrate its advantage by performing detector tomography of symmetric, informationally complete POVM (SIC POVM). Detector fidelity is further improved through a composite error-mitigation strategy that incorporates twirling and a newly devised conditional readout error mitigation. Looking forward, we expect improvements in approximate compilation and hardware noise for dynamic circuits to enable generalized measurements of larger multiqubit POVMs on superconducting qubits.more » « less
-
Abstract Advancements in quantum system lifetimes and control have enabled the creation of increasingly complex quantum states, such as those on multiple bosonic cavity modes. When characterizing these states, traditional tomography scales exponentially with the number of modes in both computational and experimental measurement requirement, which becomes prohibitive as the system size increases. Here, we implement a state reconstruction method whose sampling requirement instead scales polynomially with system size, and thus mode number, for states that can be represented within such a polynomial subspace. We demonstrate this improved scaling with Wigner tomography of multimode entangled W states of up to 4 modes on a 3D circuit quantum electrodynamics (cQED) system. This approach performs similarly in efficiency to existing matrix inversion methods for 2 modes, and demonstrates a noticeable improvement for 3 and 4 modes, with even greater theoretical gains at higher mode numbers.more » « less
-
Abstract Recently, several quantum benchmarking algorithms have been developed to characterize noisy quantum gates on today’s quantum devices. A fundamental issue in benchmarking is that not everything about quantum noise is learnable due to the existence of gauge freedom, leaving open the question what information is learnable and what is not, which is unclear even for a single CNOT gate. Here we give a precise characterization of the learnability of Pauli noise channels attached to Clifford gates using graph theoretical tools. Our results reveal the optimality of cycle benchmarking in the sense that it can extract all learnable information about Pauli noise. We experimentally demonstrate noise characterization of IBM’s CNOT gate up to 2 unlearnable degrees of freedom, for which we obtain bounds using physical constraints. In addition, we show that an attempt to extract unlearnable information by ignoring state preparation noise yields unphysical estimates, which is used to lower bound the state preparation noise.more » « less
An official website of the United States government

Full Text Available